
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE

DIFFUSIVITY IN TURBULENT FLUID

CONTAINING TWO DOMINANT SCALES,

AND COMPRESSIBLE SHEAR LAYER

ACCORDING TO A KINETIC THEORY.

by

04, 
Paul M. Chung

June, 1976

ow ^
(NASA-CF-', .	 46)	 DIFFUSIVITY IN TUREULENT

	
N76-26420

FLUIC CCNTAINING TWC LOMINANT SCALES, AND
COMFEFSSIELE SHEAF LAYFF ACCORDING TC A
KINETIC THEORY (Illincis tiniv.)	 36	 HC	 Unclas

Iu.S^	 CSCI 2^C r:'s/34	 4,215

t!



Diffusivity in Turbulent Fluid Containing Two Dominant Scales,

and Compressible Shear Layer According to a Kinetic Theory

by

Paul M. Chung

Department of Energy Engineering

University of Illinois at Chicago Circle Campus

June, 1976



.-N6
	

r

ACKNOWLEDGEMENT

This work is conducted under the NASA Grant NSG 1150. The encouragement

and guidance of Dr. John Evans of the Langley Research Center are gratefully

acknowledged.



f

i

i

I. INTRODUCTION

The physical and mathematical bases of the kinetic theory approach to

the chemically reacting, incompressible, turbulent flows have been described

in several of the previous papers. 
(1-5) 

Recently, it has been shown 
(6) 

that

certain exact solutions of the governing kinetic equations can be obtained

through construction of the appropriate Green's functions. However, the com-

plexity of the kinetic equations is such that it is generally impractical to

attempt to obtain the exact solutions except for the rather simple flow con-

3	 figurations such as the plane, shear mixing layer analyzed in Reference 6.

A study is being conducted to develop an approximate formalism which

t	 embodies the salient contributions of the kinetic theory but which employs

a much simplified set of equations such that the chemical reactions taking

i
place in the realistic flow fields can be analyzed.

This need to generate an approximate method of application of the kinetic

theory to engineering problems becomes accentuated when one considers the

compressible kinetic theory which is being constructed. Obviously, the

compressibility increases the complexity of the governing equations, and,

exact solution of the equations for the realistic flow configurations

becomes extremely difficult.

The essence of development of the approximate method of solution is as

follows.

We first develop a simplified moment relationship, from the two non-

equilibrium-degree kinetic equation, (5) which will relate the effective

length scale, +e , to the mean turbulence energy, and perhaps a few other

mean flow properties, and to the two given length scales, A  and Ab . This

length-scale equation is not needed for the simple flow fields such as
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the plane shear layer.

Next, we make use of the existing solution of the momentum equation

for the particular flow problem. This is because the greatest difficulty

in the application of the kinetic theory arises from the solution of the

governing equation for the turbulent momentum field when the flow field is

complicated. At the same time, it is known that the mean velocity, mean

shear stress, etc., are usually quite well described by the existing

theories such as the Prandtl's mixing-length theory. We assume an appro-

-). 
-► 

Z.priate form of the distribution function, f(t,x,u)du, and from the existing

solutions of the mean values, we determine the distribution function of

the fluid elements.

Finally, the kinetic equations governing the chemical species and

energy are solved for their distribution functions by the use of the

f(t,x,u)du, since it is the mixing and chemical reactions which the exist-

ing theories are unable to describe correctly. (1-3) The effective length-

scale equation is also employed in the solution of the kinetic equations

when it is warranted.

The above process is simpler when the incompressible assumption is

made, for then the distribution function of the fluid elements, f(t,x,u)du,

can be determined independently of the solution of the kinetic equations

for the energy and chemical species. In a compressible flow, determination

of fdu from the existing solution of the momentum equations and solution

of the kinetic equations become coupled. Since the existing solutions

depend on the mean density variations only, an iterative scheme is expected

to be satisfactory.

The present report describes the initial phase of development of the

approximate formalism. It consists of two portions. The first contains
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the solution of the two nonequilibrium-degree kinetic equation (5) for the

effective length scale and turbulence energy for a spatially homogeneous

turbulence field with two characteristic length scales, wherein the source

for one family of eddies exists. This solution is applied to the evalua-

tion of the eddy diffusivity in the combustion chamber of an internal

combustion engine. The result is compared with the other existing solu-

tion. 
(7) 

This is carried out to demonstrate the feasibility of obtaining

an effective length-scale equation within the context of the kinetic theory.

The second portion of this report contains the formulation and partial

solution of the compressible plane shear layer according to the approximate

formalism discussed earlier.

1	 II. HOMOGENEOUS FIELD WITH TURBULENCE SOURCE

Governing Equations

We consider an incompressible, homogeneous turbulence field consisting

of two characteristic length scales. At time zero, the turbulence energies

associated with both length scales are given. For time greater than zero,

we consider that a source for the eddies associated with one of the two

scales exists in the field. The two coupled Langevin equations for the

two degrees of freedom, U and V, given in References 5 and 6 are modified as,

dUi .

dt	
- SaU1 + 2SUi - sc(Ui - Vi) + Ai (t) + Ka i	 (1)

I
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dVi
dt	 - 

6bVi - 6 c 
(VI- UP + Ai (t) + Kb i	 (2)

where the U'-degree of freedom is considered to have the source for t > 0.

Also, as it is evident in Eq. (1), the source strength, 2SUi, is considered

to be proportional to U i . As we shall see subsequently, this particular

form can imply, within the context of the present simplified analysis, the

turbulence energy generation in proportion to the mean shear.

All symbols are defined in the Nomenclature. The physical meaning of

the Langevin equations has been discussed in the previous papers, 
(5,6) 

and,

therefore, it is not discussed here.

The Fokker-Planck equation governing the joint distribution function,

x,U'V',)dU'dVf2(t,	 ' , can be constructed from Eqs. (1) and (2) in the same manner

as that shown in Reference 5. The moment equations governing the three

components of the turbulence energy then can be derived from the Fokker-

Planck equation in the same manner as that shown in Reference 6 as,

d<UU>dk k	 a <WkWk> 1/2	 8
<W k W k >1/2 S(t) - 11

	<UkUk>

[ 

+ (5 + M)<UkVk> + M<VkVk >	 (3)

d<V
1

 V 
k >	 1/2

dT	
= <WkWk>	 C<UkUk> + (5 + M)<UkVk>

'	 - (4 + 7M)<UkVk ]	 (4)
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5

d<UkVk>	
1/2

di	
<WkWk> 	3<UkUk> + (2 + M)<VkVk>

{ ^	 r

7 + 3M -	
4>1/2 

S(t)^ <UkVk>	 (5)

`WkWk

where

-WkWk>	 <UkUk> + 2<UkVk> + <VOk>	 (6)

In the above equations, all energy quantities are in dimensionless form

as,

<UkUk> . <UkUk>/<Wk "o

<UOk> . <UN> / <WK> o
	

(7)

<VkVk> . <VkVk>/<WkWk>o

Also,

M - A 
a 
/Ab

S	 S/Bao	 (8)

Bao ' <WkWk>
0
7(U )

and
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The three coupled equations, Eqs. (3), (4) and (5), can be readily

integrated as soon as a set of initial conditions and the source function,

A

S(T), are specified. Thetis val+les will be specified to simulate the

physical problem found in the piston engines to be discussed in the sub-

sequent subsection.

From the solution of Eqs. (3), (4) and (5), the effective length

scale, Ae (T), can be constructed as (see References 5 and 6):

<W 
k 
W
k >

A	 . 
Ae . -
	 (9)e 

a	 [<UkUk> + <UkVk>] + M[<UkVk> + <VkVk>3

In the prevent problem, A  represents the characteristic scale of the hypo-

thetical family of the energy-containing eddies which would give the same

time variation of the turbulence energy, <WkWk>, of the field as that

caused by interaction of the two families of the eddies, U and V modes.

(See Reference 5.)

Eddy Diffusivity in Piston Engines

As it was stated in the Introduction, one of the objectives of the

present report is to demonstrate a feasible means of deducing a length-scale

equation usable within the context of the kinetic theory approach. We

shall employ the present two-nonequilibrium-degree equations, Eqs. (3) -

(5), to analyze a portion of the problem found in a piston engine first

studied by Sirignano.(7)
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Consider the sketch of a piston engine cylinder shown in Figure 1. In

order to analyze the combustion taking place in the cylinder, the turbulent

mixing of the fuel and air must be described. This mixing in the cylinder

is controlled by at least two major families of the characteristic eddies

with considerably different characteristic scales.

The fuel and air enter the cylinder turbulently through the valve.

Therefore, their turbulence characteristics are of those dictated by the

valve. Subsequently, however, larger scale eddies are generated by move-

ment c,: the piston. In the analysis of Reference 7, which is based on the

mixing-length theory, the eddy diffusivity,D'(t), was approximated by the

follow.ng equation.

D'(t) - Aa lup1 + Abuj exp[-uI(t - t.l ) /Ab ]	 (10)

where up and ui denote the instantaneous piston velocity and the initial

intake velocity of the gases through the valve, respectively. A  and A 

denote the scales of the eddies generated by the piston movement and the

valve, respectively.

The rationale for Eq. (10) is that the characteristics of the smaller

eddies initially generated through the valve decay exponentially whereas

the piston velocity itself represents the mean turbulence velocity of the

larger eddies generated by the piston at any given time.

In order to simulate this problem by the homogeneous solution of

Eqs. (3), (4) and (5), we first consider that the V-mode of the turbulence

represents the smaller scale eddies generated by the valve, and that the

U-mode that of the larger scale eddies generated by the piston movement.

Thus,
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M - Aa/Ab > 1
	

(11)

Then, we assume that the piston movement engenders the eddies by creating

a shear layer along the wall. (See Figure 1.) If we let A  denote the

scale which is of the order of the shear layer, the mean velocity gradient

will be of the order of lupI/A a. It is well known 
(8) 

that the generation

rate of turbulence by shear is proportional to the shear stress times the

mean velocity gradient. Within the context of the present simulation this
lull

rate would be of the order of <UkUk> P— 	 For the present solution, we
a

let

1 ( AViS	
n	 (12)

d

Then,

u'
S - S/B

ao	 1 2	 Iup1	 (13)
k k o

and it can be readily shown from Eq. (3) that the rate of production of

<Uiq>lupl/Aa.

Note that there eLists a rather basic difference between the assumptions

of Eq. (10) made in Reference 7 and thone of the present equation. In Eq.

(10), it is assumed that the piston velocity lupl itself represents the

instantaneous mean turbulence velocity generated by the piston movement.

In the present assumption of Eqs. (3) - (S), and Eq. (13), the piston

velocity, lupl, is considered to be the velocity which is responsible for

the mean shear which gives a rise to the turbulence source. The



instantaneous mean turbulence velocity generated by the piston movement is

<UkUk
>1/2 

which will be found from the solution of the governing equations,

Eqs. (3) - (6).

From the solution of the present equations, variation of the effective

length scale, Ae , is obtained from Eq. (9). Then, again within the context

of the present simulation, we write,

D'(t) - Ae<W'W'>1/2
	

(14)

The eddy diffusivities given by Eqs. (10) and (14) are nondimensionalized as,

Reference 7

D(T) - jup I + M< VkVk>1 J2 	 exp C- 
3 
M<VkVk>o/2 T

J
	(15)

Present

D(T) - Xe<WkWk>1/2
	

(16)

where

lup
I

 - jupj/ <W, , 1/2 .	D(T ) - D'(t)/Aa <WkWk>1/2	(17)

In writing Eq. (15), we took cognizance of the fact that the initial

mean turbulence velocity of the intake gases, <VkV'> 1/2 , is equal to the

intake velocity uI. (See Equation 10.)
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Solution of Eqs. (3), (4) and (5)

The initial conditions of the present equations for <UkUk> and <VkVk>

are chosen such that some meaningful comparison can be made between the

present solutions and Eq. (15) employed in Reference 7. It is pointed out

at the outset, however, that a deatiled quantitative comparison between the

two results is not possible. This is because there is no quantity in the

expression for D' ( t) of Reference 7 which corresponds to the present turbu-

lence source strength, S. In Reference 7, as it has been already explained,

a direct assumption on the 
<UkUk>1/2 

itself has been made as being equal

to 1up1. In the present simulation, S was formulated by postulating a

turbulerre generation mechanism (Figure 1), and specification of its value

beyond that of the order of magnitude is meaningless. Nevertheless, as

we shall see, the comparison will elucidate certain basic qualitative aspects

of the multi-scale mixing phenomenon.

For t - 0, we let,

<V1kVk o>1/2 . us

(18)

<U^U^> 1/2 . iup1k k o

and

<UkVk>1/2 . 0o

in Eqs. ( 3) - (5).

Figures 2 through 5 show the typical results.

Discussion

Figure 2 shows the contribution of the smaller eddies generated by the

intake valve,Dv , to the diffusivity for the constant piston velocity, jup^.
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S-B denotes the results of Reference 7 given by Eq. ( 15). Since it has been

assumed in Reference 7 that the contribution of the smaller eddies decays

exponentially, the broken lines merely show these exponential decays for

the two given scale ratios, Ab/A a, of 1/3 and 1/10, respectively. The

present solutions, on the other hand, show that the contribution of the

smaller eddies does not completely decay but it persists. This is due to

the fact that the smaller eddies continuously receive energy from the

larger eddies which are being generated by the piston movement.

Figure 3 shows the diffusivity D generated by both the intake valve

and piston. According to Eq. (10), D'monotonically decreases to the constant

value, Aa 1up1, as DI dissipates exponentially. In the present solution,

D initially increases with T as the constant piston velocity begins to

generate the eddies. However, D begins to decrease as D
v
 -dissipation comes

to exceed the piston generation of the larger eddies. For T of order one,

the rate of generation of the larger-scale turbulence by u p begins to be

balanced by the turbulence dissipation of the smaller eddies, and D approaches

an asymptotic value. As it has been alluded to, comparison, between Eq. (15)

and the present solution, of the absolute levels of D(T) is rather meaningless.

Figures 4 and 5 show Dv(T) and D(T) for the sinusoidal variation of up.

Since the smaller eddies are assumed to be independent of u p in Eq. (10),

Figure 4 shows that Dv decays exponentially in the S-B solution as it did

for the constant up (see Figure 2). In the present solution, Dv somewhat

follows the sinusoidal piston movement but with a time lag after the initial

decay period. The main point here is that the contribution of the smaller

eddies to the diffusivity persists for all T as the smaller eddies continuously

receive energy from the larger eddies being generated by the piston movement.
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Figure 5 shows the variations of D(T) for the sinusoidal variation of

up . In the S-B solution of Eq. (15), D v almost completely dissipates for

T > n/4, and D becomes sinusoidal as is up . The present solution shows

that there exists a substantial time lag between the diffusivity and the

piston velocity since the u
P 

(T) determines the instantaneous turbulence

source, S(T), but not the instantaneous turbulence energy.

III. COMPRESSIBLE PLANE SHEAR LAYER

As the initial development of the formalism discussed in Section I,

which will at: , ize the existing solution of the mean momentum equation in

the solution of the kinetic equations, the compressible plane shear layer

t is being analyzed. This section describes the analysis. The final numerical

results are not as yet available. However, all basic features of the

solution expected as well as the method and assumptions made are discussed

herein.

I
Existing Solution of the Momentum Equation

There are several solutions of the mean flow properties available. For

convenience of the present analysis, we shall employ the compressible solution

obtainable via the Howarth transformation from the incompressible solution

giver. in Reference 9.

We first define the density-averaged ordinate,

o— y `P_'_19
x fo P

dy	 ( )
 m
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Then, we employ the Ting-Libby compressibility modification (Reference 10)

of the incompressible eddy diffusivity of momentum as,

P 2
s	 0.014 bum ( <p̂ ) x	 (20)

With Eqs. (19) and (20), and with appropriate similarity assumptions, the

governing mean momentum equation of the compressible plane shear layer

based on the mixing-length theory becomes identical to that for the incom-

pressible flow whose solution is given in Reference 9. The momentum equa-

tion transformed on the similarity plane is then,

2A.3
 F 

+ 2oF d F - 0	 (21)
d^ 3 	d&2

with the boundary conditions,

U00 - u

(22)

u^ - u_m
d& 	

u00 + u-00

From the solution of Eq. (21), the mean velocity and shear stress profiles

can be established as,

u^ + u 	 - u_^

<u> -	 2	 ( 1 + u + u	 erf ^)	 (23)
_m

1 p^ ( u^ + u_W\	
dF

<v> - - 2 <p>
	 U

00
) [F(^) -	 F( Q	 (24)
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<UV>	 - (0.014) 
bog u^ + u^	 Pa	 d2F

( U00 	 dE2	
(25)

Reference 9 suggests that the values of the constants o and b be 13.5

and 0.098, respectively. The functions, F and dF/dE, are obtained from

Reference 9.

Kinetic Equation for Compressible Flow

There are substantial experimental indications (see References 11, 12

and 13), which seem to show that combustion does not alter the fundamental

structure of the turbulence field. In the absence of definite contrary

experimental data, we shall assume that the high-turbulence-Reynolds-number

energy cascading structure of the turbulence field upon which the incom-

pressible kinetic theory has been built remains valid. Then, the 4inetic

equation can be constructed to include the density variation in basically

the same manner as the incompressible kinetic equation of Reference 1.

This compressible equation is,

(< > + U ) apzf - ' <um> apzf	 6 < P >	 2 
a	

(fzU )
uk	 k ( axk	axk aUm )	

au 
	 k

`UmUm>
	

3 2 fz	 _ a

+	 3	 au k au k ]	
aUk ( fz 

a<p>	 a
axk ) - aUk (1'kfap)

- fpw - 0
	

(26)

The structure of the turbulence field enters into the kinetic equation

through the eddy-interaction terms contained in the square brackets, and it

is seen that these terms are identical to those derived for the incompressible

i
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kinetic equation since it has been assumed that the fundamental structure

of the turbulence field is unaltered by the compressibility.

rk, in Eq. (26), represents the direct turbulence generation by the

compressibility. This term should engender, among other terms, the corre-
2Uk

lation < P k > in the second order moment of Eq. (26). It is our

present feeling that this term is not important unless there exist shocks

in the flow field (Reference 14). Therefore, for the present initial

analysis of flows without shocks- we shall let

r  - 0

r  will be analyzed in detail in a future paper.

Once the solution of Eq. (26) is obtained for a given flaw problem, all

one-point moments of engineering interest can be readily constructs! as,

for instance,

<ui>	 J fuidU
(27)

<pU1Ui > = J p (x,U)U iU' f(x,U)dU

Before Eq. (26) can be solved, a specific relationship must be found

between the density, temperature, and the pressure.

There are several plausible relationships that can be employed to relate

the fluctuating and mean components of p, t, and P. For the present study,

we shall try the relationship suggested in Reference is for ideal gases,

which is,
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t - <t>	 p - <p>
<t>	 _ -	 <p>
	 (28)

where t - <t> and p - <p> denote the fluctuating components of the temperature

and density, respectively. Equation (28) can be rewritten as,

<- p i 2 - <t 	(29)
Solution of Compressible Plane Shear Layer

According to the approximate concept set forth in Section I, we shall

make use of the existing solutions given by Eqs. (23), (24), and (25). The

particular problem to be analyzed is the plane shear layer shown in Figure 6.

In addition to the mean velocity difference, u. and u-,,, it is considered

that the two streams are at different mean temperatures of tW and t_., respec-

tively. We seek the solution of the kinetic equation, Eq. (26), for the

temperature and density profiles, as well as the other turbulence quantities,

with the aid of Eqs. (23) - (25).

As an initial try, we assume that the probability distribution function

of the fluid elements, f, and those of the temperature and density, tf and

pf, can be approximated by bimodal functions. Thus, we write,

f	 fl + f2	(30)

i

where
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f M
	1
	 ex	

(u - uol ) 2 + V2 + W2

1	 2	 3 2	 p C	 2E /3	 1	 for V> 0	 (31)
3 ^E1^	 1

r (u - u 2 +V2 + W2
f 1	 1	 exP 	

o2)	
for V< 0	 (32)2	 2 

nE 
3 2	 L	 2E2/3	 —

^3	 2)

with f l - 0 for V < 0 and f2 a 0 for V > 0, as it has been done earlier.

(See References 1 - 5.)

Using the assumed bimodal form of the distribution function of Eq. (30),

we derive,

<u> 2 (uol + uo2 )	 (33)

<v> ' 1 ( AF - ^ )	 (34)

	

1	 2

<UV>	 1 (uol - uo2) ( E + 2 )	
(35)

2^

-̀ UkUk>	 T+ (uol + uo2 ) + 2 6n ) (El + E2)

_ uo2uo2 + 3n E
	

(36)

The first step of the present approximate solution is to determine the

functions uol Q), uo2 (&), E1 (0 , and E2 ( &) by matching Eqs. (33) - 06) wixh

the corresponding moments obtained from the existing solution of the momentum

equation. Equations (23), (:.4) and (25) give <u>, <v>, and <UV>, as functions

of ^. However, the first order mixing-length theory, from which these
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functions have been obtained, does not give the turbulence energy, <UkUk>.

We shall assume that

<UkUk> - -5 <UV>
	

(37)

Equations (23), (24), (25) and (37), show that these four mean quantities

are given provided that the density ratio p ,,/<p> is known. This is to be

expected since in a compressible flow the momentum and energy equations are

coupled.

The present proposed method of solution is as follows. For a given problem

with u /u. and t_W/tom(-pW/p-^), the density ratio, <p>/p. , is assumed. Equa-

tions (23) - (25) and (37) then give the four moments, <u>, <v>, <UV>, and

<UkUk> as functions of E. With these moments given, Eqs. (33) - (36) consti-

tute a set of four nonlinear algebraic equations for the four unknown functions,

uol (&), uo2 (&), E1 U), and E
2 (0 . Solution of these equations for the four

functions results in the distribution function f through Eq. (30). With the

f known, the kinetic equation, Eq. (26), is solved for the distribution

function of the density, and, therefore, of the temperature through Eq. (29).

The mean density profile is then evaluated as,

t

p m D - 1 P. J p(&,U) M,U)dU	 (38)

With the use cf the <p>/pm evaluated by the above equation, the moments,

<u>, <v>, <UV >, and <UkUk> are recalculated from Eqs. ( 23) - (25) and (37).

Solution of Eq. (26) is then repeated. This iteration continues until a

satisfactory convergence on the density is attained.

We shall now discuss the solution of the kinetic equation, Eq. (26).
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Commensurate with the bimodal assumption of f (see Eq. 30), Eq. (26) is

solved also by an approximate bimodal method. As it has been done earlier

(References 1 - S), we let,

t(E.U)	 t1(E,V) + t 2 (E. v )	 ( 39)

P(&.U) - P l (t•V) + P2(4•V)	 (40)

where t  a.nd P l are zero for V < 0, and t 2 and P 2 are zero for V > 0.

Now, we generate two moment equations from Eq. (26) in the following

manner. We first let z - t and integrate Eq. (26) termwise with respect

to the velocity space. This produces the thermal energy conservation equa-

tion. Next, we multiply Eq. (26) through by V, with z - t, i.id integrate

the resulting equation termwise with respect to the velocity space. This

results in the turbulent thermal-energy transport flux equation. In both

of the above equations, we set r  - w - 0. The resulting moment equations

are as follows where the appropriate similarity transformation commensurate

with the momentum equation, Eq. (21), has been performed.

de 
(<pe ><u>) + a —p dL (<pe><v>) - 0	 (41)

rA

- & -d_ <PAUV> + a `p> d <peV2>

<P > 	 > <	 `
P.

+ 36 `P <ev> - 0	 (42)
P„
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9
<UkUk>1/2

2u^
(43)

I

r" n

^r
kT

F	 '

II:

where

.1

^I

<pe><u> ° 2 <P>>	 e1e2	 <u>
Pm el + e2

ee
PW ei + e2 	1 'rE2

e 
1 
e 

2<P9UV> ° 
1 

<	 (uol - uo2 ) ( E + EZ > e +e
W	 1	 2

ee
<PeV2> ° 3 <P r ( El + E2 ) + n ( 1 2)2 ) 9 1+2eP. 	 1	 2

2^

e l 	tl/tm ,	 92 ° t2/tm

In Eqs. (41) through (48), the functions, <u>, uol , uo2, <v>, E

and 2 , represent the dimensionless quantities which have been normalized

by um. Also, p represents a dimensionless quantity which has been

normalized by pm . The same symbols as for the previous dimensional quanti-

ties have been employed for convenience.

(44)

(45)

(46)

(47)

(48)

(49)
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Solutions

A typical solution of Eqs. (33) - (36) for the functions, u
ol , uo2,

/E__ s and /E_
 
 comprising the distribution function of the fluid elements f

is shown in Figure 7, for a given density ratio <p>/pm.

As it was mentioned earlier, solution of the kinetic equations, Eqs.

r

	
(41) and (42), has not yet been completed. Different numerical techniques

to accelerate the convergence, with respect to < p >/p., are being tried.

Detailed numerical analysis of these equations will constitute a future

paper.

IV. CONCLUDING REMARKS

As an initial development of a formalism which would substantially

simplify application of the kinetic theory concept to the turbulent chemically

reacting flow problems of engineering interest, the following two problems

have been analysed.

For the purpose of eventually deducing a length-scale equation

commensurate with the kinetic theory, the two-nonequilibrium degree kinetic

equation developed earlier has been solved for a homogeneous turbulence

field with two characteristic families of the energy-containing eddies

'	 wherein a turbulence source exists for one of the two families. Solutions

have been obtained which would simulate the turbulence which exists in

'	 the combustion chamber of an internal combustion engine. There, the family

of the smaller eddies generated through the intake valve decays while the

larger-scale eddies are continuously generated by the subsequent piston

rmovement.
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A comparison was made between the eddy diffusivities deduced from the

present solution and those obtained elsewhere by the mixing-length theory.

Among other things, the present solution shows that the contribution of

the smaller eddies to the diffusivity does not quickly dissipate as was

predicted by the existing mixing-length theory. Through the interaction

of the eddies, it was found that the smaller eddies continuously receive

'	 energy from the larger eddies in such a way that the effect of the smaller

eddies on the diffusivity persists.

The governing equations deduced relate the effective length scale, Ae,

to the turbulence energy, turbulence-energy source strength, and the two

given length scales of the two families of the eddies. It seems very

feasible that such equation could be solved in conjunction with the

simplified formalism being developed.

The fundamental concepts of the simplified formalism being proposed have

been discussed in the text. These concepts are being applied to the solution

of a compressible plane shear layer. A simple, bimodal approximation has

i	
been employed to deduce the distribution function from the existing, mixing-

length solution of the momentum equation. A governing set of the moment

equations for the temperature and density fields has been constructed

according to the kinetic theory by the use of the distribution function.

This set of the equations is coupled with the existing solution of the

momentum equation through the density.

Numerical solution has not yet been completed. Different approximations

will be tested in the future for the deduction of the distribution function

of the fluid-elements from the existing solution of the momentum equation.

This seems to be one of the key points which may dictate the outcome of the

proposed formalism.
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NOMENCLATURE

Ai (t)	 Random acceleration of fluid element by the small equilibrium
et. .•_s.

b	 constant for eddy diffusivity

L(T)	 dimensionless diffusivity defined by Eq. (17).

D'(t)	 eddy diffusivity.

Dv (T)	 contribution to D(T) by the valve-generated smaller eddies.

El , E2 ,	 functions defining f l and f 2 respectively.

FM	 dimensionless stream function for plane shear layer.

f	 distribution function of fluid elements.

f1, f 2	 functions defined by Eq. (30).

X 0 U', V')	 one-point joint distribution function for U'and 'V' modes.f2(t, 

K&,i , %,i	
forces due to molecular viscosity.

M	 Aa/Ab

P	 flucluating portion of pressure.

p	 instantaneous pressure

S	 turbulence source strength due to piston movement.

S	 S/0 so

t	 time, or temperature (Sec. III)

t 
	 time at which value opens

U	 x-component of the velocity relative to the mean velocity in
Sec. II'.

U', U'	 _ U' -mode velocity. Contribution of the family of larger eddies
i	 to W'.

U,U i 	 relative velocity in sec. II1.

<UkUk>, 'eUkVk> )	 dimensionless energies

<VkVr > ' <WkWk> )	 defined by Eqs. (7) .

<UkUk>	 Turbulence enerZy in sec.1II.

s
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U x-component of the absolute velocity.

U, u instantaneous absolute velocity in sec. III.

ui mean turbulence velocity of the value-generated eddies.

up piston velocity

/2

Up up/<.kWk>o

uol,uo2
functions defined by Eqs. 	 (31) and (32).

V y-component of the velocity relative to the mean velocity.

V; V' V'-Bode velocity.	 Contribution of the family of smaller eddies
i to W'.

U,Ui relative velocity in sec. III.

V y-component of the absolute velocity.

W z-component of the velocity relative to the mean velocity in sec. III.

W', Wi velocity relative to the mean velocity.	 Wi	 - Ui	 +	 Vi

+
s, xi postion vector.

X9 y, z
a

cartesion components of x

z scalar quantity.

B <UkUk>^/2A	 in sec. III.

aa, 0 <W1kW1k>11/2Aa and <W 1 k>k/2Ab respectively.kW 1

S dimensionless quantity defined by Eq. (43)

r 
direct effect of compressibility on turbulence

C eddy diffusivity

e t/t"

A	 characteristic length scale of plane shear layer (-x/c).

Aa , A 	 characteristic scales of U' and V' modes respectively.

Ae	effective scale

Ae	 A /A
e a

similarity variable defined by Eq. (19)
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P	 density

a	 constant

T	 38sot /2

w	 source for z due to chemical reaction

< >	 ensemble average

Subscripts

o	 initial

COP -N	 averaged quantities at y = and y 	 respectively.
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